DataFakery Studio
🏠 Home💬Support
  • What is DataFakery Studio?
    • 🚀What's new in 2025.1
      • Changelog Archive
    • Editions / Licenses
    • Installation requirements
    • Setup guide
    • 👩‍💻Roadmap
  • Guides
    • Creating a DataFakery Project
    • Anonymize Microsoft SQL Server Data Source
    • Anonymize PostgreSQL Database
    • Anonymize MySQL Database
    • Docker Integration
    • Export to CSV File
  • Fundamentals
    • Project
    • Data Sources
    • Data Models
      • Virtual Tables
    • Generators / Fakers
      • Strings
      • Numbers
      • Date & Time
      • Custom Expression
      • Text Pattern
      • Regular expressions
      • Foreign Keys Generator
      • Table Lookups
      • Default Values
      • Sequence Generator
      • Constant Value
      • List Values
    • Randomizer Options
    • Optimizations
    • Data Exploration
  • Extras
    • Data Storage
    • Keyboard Shortcuts
    • Appearance / Theme
  • Support
    • Contact Support
    • Troubleshooting
Powered by GitBook
On this page

Was this helpful?

  1. Fundamentals
  2. Generators / Fakers

Custom Expression

Generates a value from a custom expression (Expression Editor)

PreviousDate & TimeNextText Pattern

Last updated 11 months ago

Was this helpful?

The Custom Expression Editor, accessible by clicking on the "..." button, allows you to use advanced expressions for generating your values. You can use a wide range of functions and operators such as string functions, mathematical operations, logical expressions (if-else statements), and reference other columns in your dataset to create new and unique values.

Faker Configuration

  • Expression: Enter the custom expression to generate the data. For example, If(Len([password]) > 10, True, False).

  • Add Suffix: Enter any additional suffix to append to the generated data (optional).

  • Replace only if Non-Null: Check this box to ensure that the faker only replaces non-null values in the column. If unchecked, it will replace all values, including nulls.

By configuring these options, you can tailor the custom expression faker to generate appropriate anonymized data for your specific column in DataFakery Studio, ensuring it meets your custom logic and requirements.